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Abstract

Our current understanding of variation in mitochondrial performance is incomplete. The production of ATP via oxidative phos-
phorylation is dependent, in part, on the structure of the inner mitochondrial membrane. Morphology of the inner membrane is
crucial for the formation of the proton gradient across the inner membrane and, therefore, ATP synthesis. The inner mitochon-
drial membrane is dynamic, changing shape and surface area. These changes alter density (amount per volume) of the inner mi-
tochondrial membrane within the confined space of the mitochondrion. Because the number of electron transport system
proteins within the inner mitochondrial membrane changes with inner mitochondrial membrane area, a change in the amount of
inner membrane alters the capacity for ATP production within the organelle. This review outlines the evidence that the associa-
tion between ATP synthases, inner mitochondrial membrane density, and mitochondrial density (number of mitochondria per
cell) impacts ATP production by mitochondria. Furthermore, we consider possible constraints on the capacity of mitochondria to
produce ATP by increasing inner mitochondrial membrane density.
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INTRODUCTION

Mitochondria play a formative role in the evolution of com-
plex life (1). Most energy in eukaryotic organisms stems from
the use of adenosine triphosphate (ATP), which serves as the
energy currency of the cell and is formed within mitochon-
dria. The relative capacity of cells and tissues to produce ATP
is dependent on the number of mitochondria within each cell
and the capacity of the mitochondrial population to use oxy-
gen and convert adenosine diphosphate (ADP) to ATP. This
process, known as oxidative phosphorylation, is driven by
chemiosmosis where the transfer of electrons by electron
transport system (ETS) complexes facilitates the movement
of ions across the semipermeable inner mitochondrial mem-
brane (IMM). The movement of ions into the intermembrane
space (IMS) forms a proton gradient (i.e., the proton motive
force, pmf) that ultimately powers the phosphorylation of
ADP at ATP synthase (2). This process is influenced by the
availability of oxygen and electron-donating substrates, the
enzymatic activity and the number of ETS complexes, and
themorphology of mitochondria (e.g., Ref. 3).

To understand variation in mitochondrial function, inves-
tigators commonly measure mitochondrial density (number
of mitochondria per cell) and coupling, relative number and
relative enzymatic activity of complexes, relative abundance
of proteins that regulate mitochondrial biogenesis and
repair, relative abundance of markers that contribute to or

directly indicate mitochondrial damage, among other meas-
ures (4–7). An increasing number of studies have also con-
sidered markers of mitochondrial fission and fusion, known
as mitochondrial dynamics (e.g., Ref. 8). With a few notable
exceptions (e.g., Refs. 9, 10), few studies have quantified the
amount of IMM within mitochondria (hereafter referred to
as “density” of the IMM) in an effort to understand variation
among individual organisms.

Provided ETS complexes are embedded within the IMM
(11), density of the IMMwithin amitochondrion can influence
the capacity of mitochondria to consume oxygen, pump pro-
tons into the IMS, and produce ATP. Changes to density of
the IMM also directly impact mitochondrial morphology,
including volume of the mitochondrial matrix, IMS, and the
intracristal space (Fig. 1). In turn, these changes can influence
mitochondrial performance. For the purposes of this review,
mitochondrial performance is defined as function of the ETS,
including electron transport, proton pumping, oxygen reduc-
tion, and ATP production. As such, an increasing number of
studies have shown that IMM density can change in response
to either an increase or a decrease in energetic demand or
energetic strain on themitochondrion (e.g., Refs. 9, 10, 12, 14).
As the IMM expands, cristae formation appears to be initial-
ized through the bending of the IMM by ATP synthase (15)
and a change in phospholipid distribution (16), as described
in Formation of Mitochondrial Cristae. This change in IMM
density and number of cristae provides the space needed for
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the cell to increase the number of ETS complexes present in
the organelle, therefore forming a proton gradient within the
new cristae. We propose that these changes in density of the
IMM alter the capacity of mitochondria to produce ATP by
changing the number of ETS complexes within the mito-
chondrion and altering the volume of IMS relative to volume
of the mitochondrial matrix. Consequently, changes to den-
sity of the IMM can represent an adaptive response to chang-
ing energetic demand (17).

This review outlines support for the hypothesis that varia-
tion in density of the IMM influences performance of the ETS,
and as a result, the capacity of mitochondria to produce ATP.
We start by outlining the formation of mitochondrial cristae
via ATP synthase dimers and phospholipid composition. We
then describe the relationship between IMM density and
capacity to build and maintain a pmf. Last, we address

possible associations between density of the IMM and mito-
chondrial density. We conclude with suggestions for how we
can better understand the roles of density of the IMM inmito-
chondrial energetic performance. We provide new hypotheses
supported by existing evidence in the field and propose addi-
tional experiments to amend the gaps presented in the litera-
ture. Finally, the majority of ideas put forth focus primarily
on a single cell type, myocytes, given most of the literature
and resulting evidence stems from research on muscle cells.
Literature not focused onmyocytes is identified as such.

FORMATION OF MITOCHONDRIAL CRISTAE

The ability of mitochondria to produce ATP is directly de-
pendent on the accumulation of protons within the intracris-
tal space. This includes the volume of cristae, which can

Figure 1. Illustration of how crista morphology changes with density of the inner mitochondrial membrane (IMM) under increased energetic demand
(A–C and corresponding micrographs) and aging (D–F). A–C are predictions based on Heine et al. (12). Wide, distantly spaced cristae and/or a lower
density of IMM in A may result in a lower concentration of protons (reduced proton motive force), altered crista junctions associated with OPA1 and
MICOS (depending on size of the matrix), and fewer adenine nucleotide translocase (ANT) per unit volume within the mitochondrion. Here, fewer ANT
exist within the mitochondrion (less IMM) to transport less ADP/ATP. Narrow, densely packed cristae in Bmay result in a greater concentration of protons
(increased proton motive force), altered crista junctions (depending on size of the matrix), and more ANT per unit volume within the mitochondrion. B is
predicted to occur as energetic demand increases. Here, more ANT exist within the mitochondrion (more IMM) to transport more ADP/ATP. Cristae that
are too narrow at an exceedingly high density of IMM in C may result in decreased mitochondrial performance if the mitochondrion exceeds its optimal
proton concentration and the production of reactive oxygen species increases significantly. Transition from A to C will fundamentally change the ratios of
IMM to outer mitochondrial membrane, intermembrane space, andmatrix, altering the ATP-producing capacity of themitochondrion—provided the overall
volume of the mitochondrion (i.e., enclosed within the outer membrane) remains constant. D–F is based on Daum et al. (13). D represents the standard
morphology of cristae where ATP synthase are associated as dimers and crista junctions are intact. E represents the early stages of mitochondrial aging
where crista junctions begin to disassemble, and ATP synthase complexes exist along shallow ridges as cristae recede. F represents complete vesicula-
tion of the IMM as ATP synthase dissociate into monomers and the IMM becomes concave. Micrographs are of mitochondria within myocytes of Tigriopus
californicus copepods (n = three copepods). The micrograph inC is from Heine et al. (12) Supplemental Material S3. Created with BioRender.com.
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influence the pmf, and how many cristae form within a sin-
gle mitochondrion (i.e., density of IMM). Therefore, our
understanding of variation in cristae morphology and den-
sity of the IMM is critical to understanding variation inmito-
chondrial function.

ATP synthase, or complex V, is best known for its role in
phosphorylating ADP to ATP across the crista membrane,
but it also plays a vital role in cristae formation. ATP syn-
thases first form as singular proteins (monomers) within the
IMM, which then combine with another ATP synthase to cre-
ate a dimer. Because of long-range attractive forces, these
dimers spontaneously associate to form rows that exist along
the curved edges of cristae (15), forming larger structures
made of four ATP synthases (tetramers). The degree at which
these dimers are angled, bending the IMM to form cristae
compartments, likely influences the number of cristae that
can form within the confined space of the mitochondrion,
and thus, the density of IMM (Fig. 1).

The angles formed by ATP synthase can directly impact
the width and volume of IMS and, therefore, the concentra-
tion of protons within the intracristal space (18). The angle
formed by ATP synthase dimers appears to vary by taxa, tis-
sue type, and even within an individual organism over time
(19–21). Bothwide-angle dimers (70�–90�, shown in algalmito-
chondria) and small-angle dimers (35�–40�, shown in Bos tau-
rus heart mitochondria) have been characterized (19, 22, 23). It
is unclear whether these angles change in direct response to
changes in energetic demand; however, wide-angle dimers
bend the IMMmore, leading to a more narrow IMS, which can
affect pmf.

The formation of ATP synthase dimers and bending of the
IMM are critical for the performance of the ETS and cellular
function (Fig. 1). Reports of monomeric ATP synthase do not
eliminatemitochondrial function altogether but are associated
with lower mitochondrial membrane potential and organism
growth in yeast (24). The formation of large- or small-angle
dimers seems to depend on the tissue type, but the details of
how the angle of ATP synthase dimers influences mitochon-
drial function requires further investigation. Although there
are fewmolecular tools available to manipulate mitochondrial
DNA products in vivo (but see Refs. 25 and 26), the effects of
ATP synthase dimer angle on the energetic capacity of mito-
chondria can be deduced by comparing organisms and tissue
types that vary significantly in energetic demand. Comparing
organisms allows for identifying patterns of natural biological
variation, which would be beneficial in understanding when a
large- or small-angled dimer would provide energetic benefits
to an organism. Laboratory techniques such as quantification
of ATP synthase dimer angles using cryo-EM and measures of
proton concentrations across the IMM using confocal micros-
copy can tell us the extent to which dimer angle is related to
pmf and density of the IMM.

The distribution of phospholipids can also contribute to
bending of the IMM. Cardiolipin (CL) is one of the main
phospholipids involved in IMM morphology (27). Although
not the most abundant phospholipid within the IMM, only
making up �18% of phospholipids, CL provides elasticity at
key bending junctions in the IMM, allowing IMM to invagi-
nate (28, 29). In particular, the loss of CL synthase, the
enzyme that synthesizes CL, resulted in a reduction in the
number of extended dimer rows, increased scattered dimer

orientation, and mitochondrial dysfunction in skeletal mus-
cle of Drosophila (30). Joubert and Puff (16) outline how CL
remodeling in Barth syndrome (associated withmutations in
the tafazzin gene) results in abnormal cristae organization
and detriments to oxidative phosphorylation. In addition,
Bashir et al. (31) showed that adults and adolescents with
Barth syndrome have significantly lower ATP production via
oxidative phosphorylation in calf muscle than individuals
without Barth syndrome. This study also showed lower oxy-
gen uptake during peak exercise (V_ O2peak) in both groups
compared with control groups. As such, genetic mutations to
the genes responsible for the expression of phospholipids
lead to changes in the morphology of cristae and density of
the IMM (32).

Another important observation regarding CL is that the
phospholipid is also present in the plasmamembrane of bac-
teria, where it is critical for ATP production (33). Given that
CL is observed as a critical component in both bacterial and
mitochondrial membranes, it is likely an important, con-
served aspect of membrane structure and function. This evi-
dence, in conjunction with mitochondrial dysfunction
caused by reduced CL, lends weight to the idea that struc-
ture, and therefore density, of the IMM likely have critical
roles in function of the ETS.

In addition to CL, phosphatidylcholine (PC) and phospha-
tidylethanolamine (PE) also play critical roles in the mor-
phology and function of cristae. For instance, PC promotes
membrane fluidity and maintains a tubular morphology
leading to the formation of planar bilayers of the inner and
outer membranes. PE, however, is conical in shape and
forms tension within the inner and outer membranes, influ-
encing membrane fusion and protein movement (29).
Because of its role in the formation of cristae, PE is found in
larger quantities within the IMM than the outer membrane
(29, 34). Although the ratio of phospholipids to proteins is
lower within the IMM than the outer membrane (29), further
research is needed to determine the extent to which this ra-
tio changes with density of the IMM.

Notably, PC is found in a greater percentage on the matrix-
facing side of the IMM bilayer, whereas PE and CL are both
found on the crista lumen side of the IMM bilayer. It has been
proposed that the biased distribution of these proteins within
the IMM is to allow for stability to the curvature of the crista
membrane (27). Further research is needed to understand the
extent to which regulating these phospholipids impacts cris-
taemorphology and overall mitochondrial function.

The MICOS (mitochondrial contact site and cristae organiz-
ing system) complex and OPA1 (optic atrophy 1) also play im-
portant roles in cristae organization and dynamics (Fig. 1). The
MICOS complex is composed of seven subunits and serves to
stabilize crista junctions and form contacts between the inner
boundary membrane and outer membrane. It is also involved
in the regulation of cristae biogenesis, fission, and fusion. See
Anand et al. (35) for a recent, extensive review of the roles of
the MICOS complex in cristae dynamics. OPA1 plays a critical
role in cristae biogenesis and mitochondrial fusion (36).
Variations in the short and long forms of the complex are pro-
posed to influence the width of crista junctions. In addition,
the disassembly of OPA1 leads to the release of cytochrome c
through the widening of crista junctions and, ultimately, leads
to apoptosis (35).
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DENSITY OF THE IMM AND PROTON
MOTIVE FORCE

The IMM is populated by complexes I–V of the ETS that
contribute to the transfer of electrons fromNADH and FADH2

at complexes I and II, respectively, to complex IV where oxy-
gen is reduced to water in the mitochondrial matrix. This
transfer of electrons pumps protons across the IMM and into
the IMS by complexes I, III, and IV. The protons pumped into
the IMS flow down their electrochemical gradient and through
ATP synthase to phosphorylate ADP to ATP (37). Aside from
increasing the rate of respiration (38), mitochondria appear to
upregulate or maintain their function by increasing density of
the IMM (9, 10, 12, 39). By increasing density of the IMM, the
mitochondrion may be able to support more ETS complexes
within a given mitochondrial volume (i.e., newly formed
crista membrane becomes populated by newly formed ETS
complexes). Although such morphological changes have
the potential to meet the increasing energetic demands of
the cell (3), there are likely limits to how much IMM can
exist within a mitochondrion without decreasing mito-
chondrial function/performance of the ETS.

Theoretically, a disproportionate change in IMM surface
area relative to mitochondrial volume will impact volume of
the IMS and volume of the matrix. A change in volume of the
intracristal space is expected to alter the effort required to
maintain the pmf and, thus, the capacity of the mitochond-
rion to produce ATP (see Refs. 40–42). The number of protons
required to maintain the pmf will depend on 1) proton con-
sumption by ATP synthase, 2) proton leak of the IMM, and
3) volume of the intracristal space. Kilarski et al. (39) showed
that in response to a 6-wk cold (5�C) acclimation, crucian carp
(Carassius carassius) displayed a nearly twofold increase in
IMM area relative to mitochondrial volume in muscle tissue.
Because the oxygen content of water increases while diffusion
rates across membranes and through solutions decrease at
lower temperatures, it is hypothesized that the change in
IMM density increases oxygen delivery when diffusion rates
are low (39). We predict that this effect also allows mitochon-
dria to concentrate protons within the IMS, reduce proton dif-
fusion distance, and maintain oxidative phosphorylation.
Furthermore, increases in IMM area may allow mitochondria
tomaintain the pmf if they become damaged due to increased
oxidant exposure as described by Heine at al. (12).

In contrast, an exceedingly high density of IMM could
have several negative impacts on mitochondrial perform-
ance, such as more diffusion bottlenecks and reduced flux of
ATP synthase (43). When IMM density is exceedingly high, a
high density of ETS complexes and limited IMS could result
in the mitochondrion quickly exceeding its optimal proton
concentration. When this occurs, ETS complexes can no lon-
ger efficiently move new protons into the IMS, and electrons
can back up within ETS complexes I–III instead of being
passed to oxygen as the terminal electron acceptor (40). This
backup can allow electrons to escape the ETS and generate
reactive oxygen species (ROS). Therefore, a very high density
of IMM is predicted to be associated with low mitochondrial
function and greater ROS production, and as a result, poten-
tially an increase in oxidative damage. Alternatively, an
increase in IMM density has been shown to occur alongside
a decrease in ROS production when OPA1 is overexpressed

and cristae are narrow (44). This may be the case in humans
when OPA1 is lower in individuals with type 2 diabetes com-
pared with athletes (45). Mitochondrial capacity could be
reduced because a reduction in matrix volumemay decrease
the capacity of the mitochondrion to support the citric acid
cycle which produces the electron-donating substrates nec-
essary to power the ETS. To test these ideas, experiments
can be performed which alter energetic demand while meas-
uring mitochondrial behavior and morphology, along with
mitochondrial or whole animal performance.

An additional change that may occur with an increase in
density of the IMMmay be an increase in the presence of ad-
enine nucleotide translocase (ANT) within individual mito-
chondria, which is necessary for a proper functioning ETS.
ANT exists within both the inner boundary membrane and
crista membrane (43, 46, 47) and may increase when density
of the IMM increases (Fig. 1, A–C). As reviewed by Mannella
et al. (48), proapoptotic treatment alters inner membrane
morphology and influences the organization of ANT. If more
cristae form to meet increasing energetic demands of the or-
ganelle, that demand may be met by a greater influx of ADP
and efflux of ATP, which can be managed by more ANT
transporters within the inner boundary and crista mem-
branes. Such an increase in transport may be difficult to
implement (and decrease mitochondrial function) in mito-
chondria with fewer cristae when the demand for ATP is
high but the surface area of IMM is insufficient to transport
metabolites for oxidative phosphorylation.

As density of the IMM increases, the ratio of outer mem-
brane to IMM should decrease if the size of themitochondrion
remains constant. As a result, there is likely a point where the
transport of substrates into the mitochondrion becomes inef-
ficient to support oxidative phosphorylation. Empirical evi-
dence for a limit to the benefits of increased IMM density on
respiratory performance comes from recent work by Heine et
al. (12). Heine et al. showed that when Tigriopus californicus
copepods are exposed to ultraviolet (UV) radiation (0.5W/m2),
the metabolic rate of individual copepods was maintained at
3 h of UV irradiation but decreased after 6 h of exposure
(0.13±0.09 mmol O2/L/15 s/mm body length for the control,
0.15±0.06 at 3 h of exposure, 0.08±0.05 at 6 h of exposure).
Subsarcolemmal mitochondria within the copepod myocytes
displayed an increased IMM density in both irradiation treat-
ments (42.1 ±3.76 intersects/mm2 for the control, 69.8± 15.7 at
3 h of exposure, 81.9± 18.8 at 6 h of exposure). This suggests
that more IMMmay be a proximate response to increased oxi-
dative stress fromUV light butmay ultimately fail tomaintain
metabolic rate at exceedingly high levels of UV radiation.
Accordingly, increases in the density of the IMM can alter re-
spiratory performance depending on the ratio of IMM to the
aforementioned traits (Fig. 1,A–C).

ASSOCIATIONS BETWEEN CRISTAE DENSITY
AND MITOCHONDRIAL DENSITY

Increased mitochondrial density may support some of the
most energetically demanding aspects of animal perform-
ance, such as flight. Mathieu-Costello et al. (49), for example,
found that relatively high mitochondrial densities per mus-
cle fiber, upward of 39% of the fiber volume, are typical in
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the supracoracoideus (the muscle supporting the upstroke)
in hummingbirds (Selaphorus rufus). Furthermore, the loca-
tion of mitochondria within cells also influences mitochon-
drial function. For example, mitochondria in the muscle of
high-altitude deer mice localize to the region under the sar-
colemma adjacent to capillaries. This behavior reduces the
distance for oxygen diffusion (50) and potentially increases
the ability of mitochondria to produce the pmf required to
be distributed to the rest of the mitochondrial network
(51, 52). Interestingly, recent work shows that increases in
density of the IMM may accompany, or occur in place of,
increases inmitochondrial density (e.g., Ref. 10).

Increasing density of the IMM may be an alternative means
formitochondria tomeet increasing energetic demands in addi-
tion to increasing mitochondrial density. Nielsen et al. (10)
found that while IMM density and mitochondrial density
increased in human skeletal muscle following long-term endur-
ance training but also, cristae density (R2 = 0.58) in particular
was a better predictor of V_ O2max than mitochondrial density
(R2 = 0.41). Endurance-trained soccer players, for instance, had
an average IMMdensity of 31.6±1.8 mm2·mm�3 in the legmuscle
(musculus vastus lateralis) compared with recreationally active
men of the same agewith an IMMdensity of 25.1±1.1 mm2·mm�3.
In addition, themusclemitochondrial volumedensity of endur-
ance-trained athletes was 110% higher than that of sedentary
individuals. A similar observation was made with increases in
both density of the IMM (see Density of the IMM and Proton
Motive Force for estimates) and mitochondrial density in myo-
cytes when T. californicus copepods were exposed to varying
levels of UV radiation (see Ref. 13; 0.75±0.43mitochondria/mm2

for the control, 2.13±1.20 at 3 h of exposure, 1.89±1.01 at 6 h of
exposure). However, the effect sizes in this study were consist-
ent between treatment groups for both mitochondrial density
and density of the IMM in copepods. These results would be
expected ifmitochondrial density andmorphologywork in con-
cert to influence metabolic rate. In addition to the work by
Nielsen et al. (10) in humans, Suarez et al. (53) suggest that a
greater IMM surface area in the skeletal muscle of humming-
birds could lead to a higher V_ O2max compared with mammals,
although these data are not directly correlated.

The aforementioned studies demonstrate how the function
of the ETS can be influenced by numerous mechanisms
including, but not limited to, increases in mitochondrial den-
sity and density of the IMM. However, other changes such as
an increase in capillary density, the location of mitochondria
near the cell sarcolemma (54), and the location of mitochon-
dria near nuclei and capillary beds (52), likely play formative
roles in bothmitochondrial and cellular performance. Further
work is needed to determine the extent to which associations
may exist between mitochondrial density and density of the
IMM to influencemitochondrial performance.

CONCLUSIONS AND FUTURE DIRECTIONS

The fields of physiological ecology and mitochondrial
biology have made significant strides in understanding vari-
ation in whole animal performance (e.g., Ref. 55) and how
mitochondrial morphology impacts mitochondrial perform-
ance (e.g., Ref. 3), respectively. By integrating theory and
techniques common to these fields, we will gain a better
understanding of the mechanisms responsible for the many

fascinating and diverse adaptations to energetic challenges
that have evolved among eukaryotes. Density and morphol-
ogy of the IMM influence variation in ATP production within
mitochondria; however, few studies have evaluated the role
of change in IMM density and its relation to other mitochon-
drial traits under different energetic constraints. This review
outlines our current understanding of these relationships as
a crucial step toward understanding variation in mitochon-
drial performance.

In particular, we reviewed howmitochondrial performance
is influenced by 1) the relationship between density of the
IMM and other morphological traits of the mitochondrion,
2) bending of the IMM by ATP synthase and phospholipids,
and 3) possible relationships between density of the IMM and
mitochondrial density. The aforementioned traits interact
concurrently to influence oxygen consumption, ATP produc-
tion, and ROS production within individual and populations
of mitochondria. Last, few studies (e.g., Refs. 12, 43) have eval-
uated the limitations and possible detrimental effects of
exceedingly high levels of IMM density. Such work shows that
although increasing density of the IMM may be sufficient to
influence function when mitochondria are compromised, or
to increase oxygen consumption and/or ATP production
under increased energetic demand, there is likely a point
where exceedingly high levels of IMM density decrease mito-
chondrial performance due to a significant decrease in matrix
volume and an increase in ROS production.

To further understand how density and morphology of
the IMM can influence mitochondrial function and, there-
fore, whole animal performance, studies should include mi-
croscopy alongside measures of mitochondrial physiology
and a relevant measure of organ or organism capacity. This
approach may initially be most informative by investigating
differences in mitochondrial phenotypes between extreme
life history traits and in response to environmental change.
For example, mitochondrial morphology and respiratory
capacity can be measured in migrating and nonmigrating
birds, in animals subject to extreme differences in tempera-
ture, and between protists and complex animals. Migrating
birds are expected to maintain flight and, thus, sustain a
high metabolic rate and mitochondrial respiratory perform-
ance for longer periods than nonmigrating birds (56), espe-
cially those that undergo nonstop, transoceanic migration. It
is not clear what is different about the mitochondrial mor-
phology and IMM structure of birds that must sustain high
ATP production over long periods. As previously mentioned,
changes to density and morphology of the IMM may play a
significant role in metabolic plasticity among ectotherms;
however, this field of inquiry is scarce. The respiration rates
of crustaceans such as copepods increase significantly with
temperature (e.g., Ref. 38), but the proportion of this increase
that is due to increases in enzyme activity versus changes to
morphology of the IMM is unknown. It is also prudent to
understand how density and morphology of the IMM differ
between exceedingly small eukaryotes such as protists and
larger eukaryotes, including plants, animals, and fungi.

Understanding differences in mitochondrial morphology
under different energetic challenges may begin to shed light
on adaptivemechanisms that have evolved in different eukar-
yotes. Although we assume that morphological responses to
energetic demand are under selection, the genetic basis of
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variation in mitochondrial morphology is poorly understood.
We predict that the energetic optima for each tissue will vary
by taxa and, thus, the combination of mitochondrial and
physiological solutions and reaction norms for each morpho-
logical variable will also vary, suggesting there will not be a
common mechanism to maximize energetic capacity in all
circumstances.

Perspectives and Significance

Future work may benefit from investigating variation in
density and morphology of the IMM to understand variation
in mitochondrial performance. Doing so can further our
understanding of why we observe large amounts of variation
in mitochondrial function between organisms, tissues, and
life-history strategies (17). We hope this work encourages the
integration of mitochondrial behavior and morphology with
studies of whole animal performance in physiological ecol-
ogy and evolutionary biology.
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