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ABSTRACT 

This study examined variation in ectoparasite density and grooming behavior of naturally 

occurring white-tailed deer (Odocoileus virginianus) in southwest Alabama.  Stimulus-driven 

grooming as well as the intraspecific body size and vigilance principles of programmed 

grooming were tested.  During the rut, males had a higher average tick (Ixodidae) density than 

females and exhibited complete separation of tick parasitism between non-rutting and rutting 

periods, supporting the vigilance principle.  Stimulus-driven grooming was supported, as both 

fawns and yearlings had significantly higher fly (Hippoboscidae) and combined fly/tick densities 

than adults, and fawns oral groomed at a significantly higher rate than adults, even in the absence 

of allogrooming.  Programmed and stimulus-driven grooming of deer examined in this study 

were not mutually exclusive but ectoparasite dependent. 
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INTRODUCTION 

Behavioral Ecology and Dimorphism in White-tailed Deer  

Understanding sexual and developmental dimorphism in the ecology of white-tailed deer 

is pertinent to elucidating patterns of parasitism-related behaviors.  The study of different forms 

of grooming should take into account how behavior and morphology differ between sexes, 

cohorts, and seasons (intrinsic components).  Ectoparasite loads are also expected to vary in 

space and time (extrinsic components).  As grooming behavior is integral to the life history of 

white-tailed deer (Odocoileus virginianus), it can be predicted to respond to the abundance and 

identity of local parasites. 

In Cervidae and other animals possessing male weaponry, sexual dimorphism can be 

observed in species where antlers are utilized in female assessment of male genetic quality, 

intraspecific male-male competition, dominance displays to other males, and predator defense 

(Clutton-Brock, 1982).  Fawns (0.5 years) occasionally develop antler “buttons” several months 

after losing their spotted pelage, which occurs approximately four months after birth (Ditchkoff, 

2011), and maximum antler growth is attained at 4.5+ years of age (Strickland & Demarais, 

2000).  Male and female biological roles are reflected in their morphological evolution.   

Males are generally larger than females.  Females reach maximum body mass from two 

to four years of age, and males continue growth until approximately five years of age.  This is 

due to sex-specific reproductive strategies; females invest heavily in gestation, whereas males 

invest in reproductive success in the form of breeding opportunities acquired through dominance 

(Clutton-Brock et al., 1981; Ditchkoff, 2011).  White-tailed deer not only exhibit sexual 

dimorphism but also are developmentally dimorphic.   
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Developmental dimorphism can be observed amongst fawns, yearlings (1 - 1.5 years), 

and adults.  The majority of body mass is gained by 2.5 years of age (Leberg and Smith, 1993) 

and begins to level off in subsequent age classes of mature individuals.  This is true for males 

and females, although males tend to grow at a higher rate than females during gestation and post 

birth, as larger males are thought to hold a higher potential of reproductive success in 

polygynous species (Trivers, 1972; Clutton-Brock et al., 1981).  Upon birth, fawns weigh 

upwards of 4.1 kg (Verme, 1989), yearling males anywhere from 30 to 50 kg, and mature males 

60 to 180 kg (Ditchkoff, 2011).  

With regards to general behavior, most sexual differences are a result of seasonality, 

particularly the rut that moderates behavioral shifts between males and females in addition to 

yearling and prime-age bucks (Ozoga and Verme, 1985).  McCullough et al. (1989) showed 

habitat use between males and females differs significantly during the winter and breeding 

seasons where males inhabit hardwood forests and females tend to exploit grasslands.  Sexual 

segregation is pervasive in dimorphic ruminants and generally defined as “the differential use of 

space (and often habitat and forage) by sexes outside the mating season” (Bowyer, 2004).  Male 

and female white-tailed deer are typically segregated outside of the rut, with males forming 

fraternal bachelor groups and females remaining with their matriarch doe and fawns (Hirth, 

1977).   

Male and female white-tailed deer show differential use of space.  Home ranges vary 

greatly in order to acquire appropriate nutrition (Barboza and Bowyer, 2000), with males having 

larger home ranges than females.  Male home ranges increase during the rut to increase mating 

probability (Nelson and Mech, 1984), and female home ranges tend to decrease during 

parturition.  Fawns increase home range size at approximately four to eight weeks of age to 
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remain in close proximity of the dam and other deer (Ozoga et al., 1982).  Habitat and seasons 

can also influence home range, which typically decreases in size as winter severity and resources 

increase (Stewart et al., 2011).  Given that parasites may have microhabitat preferences, 

differential use of space by deer could potentially affect the likelihood of acquiring ectoparasites.   

 

Ectoparasites            

 North American white-tails are hosts to several ectoparasites, of which ticks are the most 

detrimental.  Members of Ixodidae (hard ticks) are known to be a primary stressor of deer by 

causing anemia, weight loss, pelage loss, behavioral problems (Durden et al., 1991), and they 

also transmit pathogens (Campbell and VerCauteren, 2011).  According to Durden et al. (1991), 

the three most common ticks in Alabama are Ixodes scapularis (blacklegged deer tick), 

Dermacentor albipictus (winter tick), and Amblyomma americanum (lone star tick).  Adult I. 

scapularis are found in highest densities during the winter (in addition to more than any other 

tick), but their immatures are not common on white-tailed deer.  D. albipictus parasitizes deer 

mostly during the fall, winter, and spring (Bishopp and Trembley, 1945), and A. americanum is 

primarily a summer tick (Durden et al., 1991).  Most ticks parasitize their hosts for hours or days, 

but the non-host phases of their life cycle are relatively long (McCoy et al., 2013).  In red deer, 

tick burden was found to be sex-related and may be linked to sexual segregation, as sex and age 

were significant predictors of tick density.  At least in male red deer, it has been suggested that 

intrinsic factors (e.g., size and age) play a greater role in predicting tick densities than extrinsic 

environmental factors, with the opposite trend found in females (Ruiz-Fons et al., 2013).   

 In addition to ticks, Hippoboscidae (deer keds) are also considered a significant 

ectoparasite of white-tailed deer due to their abundance (Demarais et al., 1987).  Hippoboscids 
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are obligate blood-feeding ectoparasites of mammals, and the only known deer ked associated 

with southeastern white-tails in the United States is Lipoptena mazamae (Kern, 2003), possibly a 

vector of Bartonella bacteria that infect vertebrate erythrocytes (Reeves et al., 2006).  Deer keds 

are flattened dorso-ventrally and drop their wings upon finding a suitable host (Kern, 2003).  In 

addition to L. mazamae that ranges from South Carolina to Texas, three other species parasitize 

white-tailed deer and other cervids in North America: Lipoptena cervi is found on white-tails in 

the northeast, Lipoptena depressa is found on Odocoileus hemionus columbianus (black-tailed 

deer), O. h. hemionus (mule deer), and white-tails throughout the west, northwest, and 

northcentral United States and Canada, and Neolipoptena ferrisi commonly parasitizes O. h. 

hemionus and white-tails in the western United States (Bequaert, 1953 in Davis, 1973; Allan, 

2001).  In regards to management, any reduction in stressor input (ticks and flies) should prove 

beneficial to a population (Demarais et al., 1987).   

 

Programmed and Stimulus-driven Grooming 

 Parasite defense grooming is regulated by a central control mechanism via hormonal 

modulation (Meisenberg, 1988) and cutaneous stimulation (Riek, 1962 in Mooring et al., 2000).  

Within dimorphic species of terrestrial mammals, these regulations can be explained by 

programmed and stimulus-driven grooming models.  Programmed grooming, controlled by an 

ultradian clock of the central nervous system (CNS), can occur in the absence of any bite 

stimulus and is predicted by the intraspecific body size (Hart et al., 1992) and vigilance 

principles (Hart et al., 1992; Mooring and Hart, 1995).  The intraspecific body size principle 

predicts that smaller individuals will groom more than larger individuals to prevent attachment 

of ectoparasites, and therefore will house fewer parasites (developmentally dimorphic 
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grooming).  This is due to smaller or younger individuals having a greater surface area-to-mass 

ratio than larger or older individuals, and thus younger individuals sustain a higher cost of 

infestation (Hart et al., 1992; Mooring et al., 2000).  The vigilance principle states that breeding 

males of a polygynous species will groom less than females and bachelor males during a 

reproductive period (sexually dimorphic grooming).  This can be due to changes in time budgets, 

leading to an increased level of vigilance for oestrous females and rival males, or be attributable 

to physiological suppression, which results from increased levels of testosterone, as 

demonstrated in domestic goats (Mooring et al., 1998; Kakuma et al., 2003).   

In contrast, stimulus-driven grooming suggests grooming bouts will occur from parasitic 

irritation, and therefore predicts that animals with a greater number of parasites should groom 

more (Hart et al., 1992; Mooring & Samuel, 1998).  Although programmed and stimulus-driven 

grooming are not mutually exclusive, one model may explain grooming activity more than the 

other (Hawlena et al., 2008).  These models imply that an optimal grooming rate should balance 

the cost of parasitic infestation against the costs of grooming (Mooring et al., 2002). 

 

Objective 

 This study seeks to test predictions of programmed and stimulus-driven grooming models 

in Odocoileus virginianus.  If grooming is controlled largely by the programmed model, then 

juveniles (fawns/yearlings) should groom more than adults and carry fewer ectoparasites due to 

prophylactic grooming.  Males should also carry more parasites than females during the rut from 

a lower rate of grooming due to changes in vigilance and/or increased testosterone.  However, if 

the stimulus-driven model explains grooming, individuals with higher parasite loads should 

groom at a higher rate.  This study not only seeks to assess predictions based on parasite loads of 



6 

 

Ixodidae, but due to the higher density of deer keds in relation to ticks per individual in the focal 

population, it also assesses the predictions of parasite loads by Hippoboscidae. 

 

METHODS 

Study Site 

 This study was conducted on a natural population of white-tailed deer in Clarke and 

Wilcox counties, Alabama, U.S.A. during September ‘13 – January ‘14 and September ‘14 – 

February ‘15.  The site was owned by Soterra LLC, leased by Hardwood Hunting Club, and 

consisted of 5.43 km
2
 of predominantly deciduous bottomland hardwoods and evergreen forest.  

Less common habitat included mixed forest, shrub land, grassland, pasture, wooded wetlands, 

and open roadway.  Thirteen food plots ranging from approximately 320-9,300 m
2
 were planted 

in April and September for the spring and winter, respectively, to supplement population 

nutrition.  Five spring plots consisted of lablab (Lablab purpureus), cowpeas (Vigna 

unguiculata), and milo (Sorghum bicolor).  All thirteen winter plots were comprised of rape 

(Brassica napus), crimson clover (Trifolium incarnatum), chicory (Cichorium intybus), wheat 

(Triticum aestivum), oat (Avena sativa), and rye (Secale cereale).  Anthropogenic impact was 

minimal, but commercial logging was an occasional occurrence.   

 

Quantifying Ectoparasite Load 

 Parasite density was quantified through the examination of males and females harvested 

during the 2013 (October 15 – January 31) and 2014 (October 25 – February 10) hunting 

seasons.  Using a Petco two-sided flea comb, each individual was examined from the ventral 
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midline to the left lateral surface and from the chest to the anus only where white hair was 

present.  All ectoparasites were stored in 75% alcohol and identified to species based upon 

general morphology (Needham, 2011).  Quantities were doubled to approximate total 

ectoparasite load present on each deer’s ventral surface, being that there was no reason to suspect 

one side of an individual housed more parasites than the other.  Quantifying ventral parasite load 

and not total density per deer was sufficient since only a consistent representation of parasites 

was needed for analysis.  Sex, age, mass, and month were also recorded at this time. 

 Age was estimated based upon dentition, including the presence, absence, and/or wear of 

milk teeth, sixth molar, cusps, dentine, and enamel (Cain and Wallace, 2003).  Individuals were 

aged in half-year increments assuming conception in January and a seven month gestation period 

(Haugen, 1959).  Three cohorts were established including fawns, yearlings, and adults as 

recommended by Gee et al. (2002).  We determined mass using a Cabela’s Big Buck Scale 

before individuals were field dressed.   

 

Quantifying Grooming 

 Behavioral observations were conducted from September ’13 – February ’14 and 

September ’14 – February ’15 on food plots using box stands (enclosed hunting platforms), 

making the viewing of deer inconspicuous.  All deer were observed with Nikon Action 7x35 mm 

binoculars and assumed to be different individuals.  Continuous recording and behavior sampling 

(Martin and Bateson, 2007) were implemented to document strictly grooming behavior on 

multiple individuals simultaneously.  Oral (licking and gnawing) and scratch grooming of fawns, 

females, and males of all ages present on food plots were recorded, including autogrooming and 

allogrooming.  Grooming bouts lasting less than five seconds were recorded as rates (events · 
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min
-1

), whereas bouts lasting longer than five seconds were recorded and combined as total 

durations (min · min
-1

), expressed as proportions (Martin and Bateson, 2007).  Individuals were 

aged in half-year increments based upon morphological features including snout shape, torso 

size, posture, and musculature (Meares, 2001).  The month of observation was also noted.  

 

Analytical Design 

 All statistical analyses were performed using R version 3.0.1 (R Core Team, 2013).  

Variation in ectoparasite density was modeled using generalized linear models (GLMs) with a 

negative binomial error distribution and logarithmic link function since the response variable was 

discrete in the form of count data.  We used a negative binomial distribution due to 

overdispersion when models were fitted with a Poisson distribution (Ruiz-Fonz et al., 2013).  

Predictors included mass, cohort, sex, and rut.  Individuals harvested during January and 

February were recorded as being ‘in rut’ based upon first observations of fawns and the diffusion 

of bachelor groups.  Mass was coded as a numeric predictor, whereas cohort, sex, and rut were 

coded as factors.  Fully saturated models were reduced to the most parsimonious form in a 

backwards stepwise manner using the ‘step’ function based upon Akaike Information Criteria 

(AIC; Akaike, 1974).  Variance inflation factor analysis (VIF) was used to detect 

multicollinearity among model predictors (Zuur et al., 2010).  All predictors that yielded a VIF 

value >10 were subsequently removed from the model in a backwards stepwise manner.  Final 

models were validated using the Pearson Χ
2 

Goodness of Fit test.  Lastly, model residuals were 

extracted using the ‘resid’ function and tested for normality using the Shapiro-Wilk test.   

 Variation in grooming rates and total durations were analyzed using a non-parametric 

approach due to highly skewed data with many zeros.  A single yearling was observed during the 
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study and not included in statistical analyses.  We opted to use the Mann-Whitney U test to 

compare mean values of independent samples (Mooring et al., 2006). 

 The ‘MASS’ library was used for modeling (Venables and Ripley, 2002) and the ‘car’ 

package for VIF analyses (Fox and Weisberg, 2011).  The ‘ggplot2’ (Wickham, 2009) package 

was used for graphical development.   

 

RESULTS 

Variation in Ectoparasite Density 

 Average values and standard deviations of ectoparasite density per cohort and sex were 

calculated for each parasite family and combined as an estimate of total ectoparasite load    

(Table 1).  Lipoptena mazamae (Diptera, Hippoboscidae) was the most prominent ectoparasite, 

found on all harvested individuals.  Dermacentor albipictus was the most abundant tick, only 

found in January, followed by Ixodes scapularis in November and January, and Amblyomma 

americanum in January and February (Ixodida, Ixodidae). 

In reference to Ixodidae, the interaction between sex and rut was removed from the final 

model due to quasi-complete separation.  A single individual out of rut was parasitized by ticks 

(Nfemale = 1/5, Nmale = 0/3), and all individuals in rut were parasitized by ticks (Nfemale = 2/2,   

Nmale = 7/7; Figure 1).  Males not only exhibited complete separation of tick parasitism at the  
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Table 1 | Average ectoparasite density (parasites / deer) and standard deviation per cohort and 

sex with respect to Ixodidae (Ixo), Hippoboscidae (Hip), and total ectoparasite load. 

Sex Cohort N Ixo Hip Total 

Female Fawn 0 NA NA NA 

 Yearling 2 3.0 + 4.2 34.0 + 22.6 37.0 + 18.4 

 Adult 5 3.2 + 4.6 55.2 + 32.2 58.4 + 30.8 

Subtotal Female  7 3.1 + 4.1 49.1 + 29.7 52.3 + 28.2 

Male Fawn 2 8.0 + 5.7 46.0 + 62.2  54.0 + 56.6 

 Yearling 2 0.0 + 0.0 88.0 + 87.7 88.0 + 87.7 

 Adult 6 19.0 + 20.6 35.7 + 24.0 54.7 + 34.9 

Subtotal Male 
 10 13.0 + 17.5 48.2 + 45.4 61.2 + 45.7 

Total  17 8.9 + 14.3 48.6 + 38.6 57.5 + 38.6 

NA, not applicable  
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onset of rutting activity but, on average, had a higher tick density than females in rut.  After 

removing the partial separation from the model, variation in tick density was explained most 

parsimoniously by sex; males had significantly more ticks than females (Table 2).  Mass, cohort, 

and rut were not significant predictors of tick density.   

The interactions between mass and cohort, as well as mass and rut, best explained 

variation in fly density.  Hippoboscid density decreased significantly with age (per cohort) for 

every one unit increase in mass.  Individuals in rut had more flies per unit mass than individuals 

out of rut (Table 2).  The individual predictors mass, cohort (Fig 2), and rut (Fig 3) were 

therefore retained in the final model, allowing significant interactions with covariates to be 

considered.  Sex was not a significant predictor of hippoboscid density.   

Total ectoparasite load followed a similar pattern to what was found for Hippoboscidae 

alone.  When combined, tick and fly density decreased significantly per cohort as mass 

Figure 1 | Boxplots and mean values (red dots) of interactive effect between sex and rutting       

activity on ectoparasite density (ticks / deer).  
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increased.  When considering mass, total ectoparasite load was higher on individuals in rut than 

out of rut (Table 2).  Single predictors were significant and retained in the final model           

(Figs 2, 3).  Sex was not a significant predictor of total ectoparasite load.  

 

Table 2 | Statistical results (coefficient / z-value and significance level: − not retained, #0.1, 

*0.05, **0.01, ***0.001) of generalized linear models (negative binomial error distribution and 

logarithmic link function) created to predict ectoparasite density per deer with respect to 

Ixodidae (Ixo), Hippoboscidae (Hip), and total ectoparasite load.   

Predictor Ixo Hip Total 

Mass − -0.0569 / -2.719 ** -0.0517 / -2.558 * 

Fawn 
a
 − -12.4638 / -3.838 *** -4.9464 / -2.247 * 

Yearling 
a
 − -5.3032 / -2.477 * -5.0875 / -2.452 * 

Sex 
b 

1.4200 / 1.647 # − − 

Rut 
c 

− -3.3689 / -2.735 ** -3.8413 / -3.237 ** 

Mass:Fawn
 a 

− 0.4206 / 4.055 *** 0.1913 / 2.659 ** 

Mass:Yearling 
a 

− 0.1241 / 2.420 * 0.1205 / 2.424 * 

Mass:Rut 
c
 − 0.0592 / 2.536 * 0.0720 / 3.201 ** 

Intercept 1.1451 / 1.705 # 6.7977 / 6.502 *** 6.5604 / 6.488 *** 

a 
in relation to adults 

b 
males in relation to females 

c
 in rut as related to out of rut 
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Figure 2 | Boxplots and mean values (red dots) of ectoparasite density (parasites / deer) per cohort 

with respect to Hippoboscidae and total ectoparasite density.   

Figure 3 | Boxplots and mean values (red dots) of ectoparasite density (parasites / deer) of deer 

in and out of rut with respect to Hippoboscidae and total ectoparasite density.   
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Variation in Grooming Behavior  

The cautious demeanor of deer creates challenges in collecting adequate data from a wild 

population (Haugen, 1959).  Individual deer were observed for approximately 16 of the 150 

hours of field work.  Averages and standard deviations per cohort and sex were quantified for 

each type of grooming behavior.  Not all observed fawns were sexed during this study (Table 3).   

 

Table 3 | Averages and standard deviations of grooming rates (events · min
-1

) and total durations        

(min · min
-1

) of combined autogrooming and allogrooming (OR oral rate, SR scratch rate, OD 

oral duration) per cohort and sex. 

Sex Cohort N OR SR OD 

Female Fawn 0 NA NA NA 

 
 

Yearling 0 NA NA NA 

  

Adult 15 0.0100 + 0.0236 0.0041 + 0.0096 0.0010 + 0.0032 

Subtotal Female  15 0.0100 + 0.0236 0.0041 + 0.0096 0.0010 + 0.0032 

Male Fawn 2 0.0423 + 0.0598 0 0 

 Yearling 1 0 0 0 

 Adult 4 0.0211 + 0.0423 0 0 

Subtotal Male  7 0.0241 + 0.0412 0 0 

 Fawn
 a 

14 0.0426 + 0.0446 0.0159 + 0.0279 0.0018 + 0.0031 

Total  36 0.0254 + 0.0384 0.0079 + 0.0192 0.0011 + 0.0028 

   a 
sex not determined 

 NA, not applicable  

 

 

Combined autogrooming and allogrooming oral rates of fawns were significantly greater 

than adults (Mann-Whitney U test: W = 90, Nfawns = 16, Nadults = 19, p < 0.05; Fig 4).  Oral 
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grooming rates did not differ between females and males (W = 50, Nfemales = 15, Nmales = 6, p = 

0.6604) nor rutting and non-rutting periods (W = 90, Nrut = 8, Nnon-rut = 27, p = 0.4459).   

 Scratch grooming rates did not differ between fawns and adults (W = 181, Nfawns = 16, 

Nadults = 19, p = 0.1995).  No males scratch groomed (N = 0/6), but some females did (N = 3/15).  

No scratch grooming occured during the rut (N = 0/8), and no scratch grooming durations were 

observed during this study (N = 0/36).   

 Oral grooming durations did not differ between fawns and adults (W = 174, Nfawns = 16,           

Nadults = 19, p = 0.2784).  No males oral groomed in the form of durations (N = 0/6), but females 

did (N = 2/15).  No oral grooming in the form of durations was observed during the rut             

(N = 0/8).  When allogrooming was excluded from modeling, autogrooming oral rates and 

durations were analyzed independently.   

 Fawn oral autogrooming rates were significantly greater than adults (W = 218, Nfawns = 

16, Nadults = 19, p < 0.05; Fig 4).  Oral autogrooming rates did not differ between males and 

females (W = 38, Nfemales = 15, Nmales = 6, p = 0.4981), and autogrooming rates did not differ 

between rutting and non-rutting periods (W = 93, Nrut = 8, Nnon-rut = 27, p = 0.52).   

 Oral autogrooming durations did not differ between fawns and adults (W = 164, Nfawns = 

16, Nadults = 19, p = 0.5138).  No males oral autogroomed in the form of durations (N = 0/6), but 

females did (N = 2/15).  No oral autogrooming durations were observed during the rut (N = 0/8).  
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DISCUSSION 

 

Body Size and Vigilance Principles 

 

 This study provided support for the stimulus-driven grooming model with respect to       

L. mazamae (Hippoboscidae) and total ectoparasite load.  However, it did not support the 

intraspecific body size principle of programmed grooming in white-tailed deer for Ixodidae, 

Hippoboscidae, or total ectoparasite load.  Juveniles (fawns and yearlings) had significantly 

higher fly and combined fly/tick densities than adults per unit increase in body mass (Table 2), 

but these densities alone do not indicate that individuals groomed responsively to external 

stimuli.  In wild populations, we must also consider grooming behavior to determine if parasitic 

trends are a result of proximate agitation or an evolved programmed response.  Significant trends 

Figure 4 | Boxplots and mean values (red dots) of total oral and oral autogrooming (allogrooming 

removed) rates between fawns and adults. 
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in parasitism, combined with significantly higher oral grooming rates in fawns versus adults do 

provide support for responsive grooming.  Higher densities of hippoboscids on both fawns and 

yearlings (compared to adults) were associated with significantly higher rates of oral (combined 

auto/allogrooming) and oral autogrooming for fawns versus adults (Figure 4).  This trend also 

holds for total ectoparasite load, considering both flies and ticks as detrimental ectoparasites.    

 The average values of ectoparasite densities for fawns and yearlings indicate that 

yearlings had a greater hippoboscid density than fawns, and adult total ectoparasite load was 

greater than fawns (Figure 2).  We suspect that this occurrence may be due to the small sample 

size of harvested fawns (Table 1), as fawn and young buck recruitment are encouraged on 

managed property to produce desirable mature bucks (Jacobson et al., 2011).  The predominant 

support for stimulus-driven grooming lies in the differences between fawns and adults, in that we 

were unable to observe enough yearling grooming behavior for statistical analysis.  As mass 

increases with age, the interaction between these two variables best explains the decrease in 

ectoparasite load. 

 This study found significantly higher tick densities on males than females (Table 2). 

However, due to quasi-complete separation for the interaction between sex and rutting activity 

not included in modeling (Fig 1, Table 2), it is likely that distractions from vigilance played a 

role in mediating the increase in male tick density during the rut, thus supporting the vigilance 

principle of programmed grooming for Ixodidae.  Although the primary focus of the vigilance 

principle is male and female ectoparasite densities and grooming rates during the rut, it seems 

evident that these parameter values change between rutting and non-rutting periods as well. 

 Complete separation of male tick densities in and out of rut parallels the hypothesis that 

male ectoparasite density should be greater than females and sexually immature males during the 
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rut.  This reflects temporal changes as males begin to exhibit rutting behavior (e.g., chasing, 

tending, mating, and fighting rivals).  Indeed, this study found that ticks parasitized males more 

than females during the rut (Figure 1).  Post hoc analyses were not employed to analyze tick 

variation for the subset of males and females during the rut, but the separation and higher rate of 

parasitism on males during the rut supports the vigilance principle.  Future field studies should 

seek a higher sample size which would be particularly important if post hoc analyses are deemed 

necessary in light of partial separation.   

Finally, we also note that variation in tick parasitism regarding rutting behavior should 

not be attributed to fluctuations in environmental tick abundance, as the density of all three 

identified tick species vary differently during a given year (Durden et al., 1991).  With that said, 

grooming rates are predicted to adjust accordingly on a seasonal basis, as tick (ectoparasite) 

challenge fluctuates temporally (Mooring et al., 2004). 

 Grooming rates and total durations between males and females during the rut could not 

be analyzed, as only a single female was observed during the rut.  One fawn and one adult were 

observed concurrently of five males during the rut, and both groomed at an oral rate of 0.0845 

events · min 
-1

.  The single adult female observed during the rut did not groom.     

Programmed grooming may not only be due to distractions from vigilance during the rut 

but also physiological suppression by testosterone (Mooring et al., 1998; Kakuma et al., 2003).  

Testosterone levels of harvested males were not quantified for this study.  Nevertheless, as 

testosterone levels increase during periods of mating (Bubenik et al., 1990), the associated peak 

rutting activity (January and February) in the focal population was utilized as a model factor 

rather than direct measures of testosterone. 



19 

 

 Overall, grooming in white-tailed deer of southwest Alabama was predominately 

stimulus-driven with an underlying rate of programmed grooming.  Programmed grooming for 

ticks should be considered within an evolutionary framework, as selective pressures may have 

previously shaped current behavioral aspects of cervids during the evolution of artiodactyls 

(Mooring et al., 2002).  Conversely, stimulus-driven grooming in response to flies can be 

considered as a proximate response to agitation.  This study supports the concept that these 

models of grooming are not mutually exclusive (Hawlena et al., 2008) but parasite and host 

dependent.   

 

Applications 

 Our results increase basic knowledge of white-tailed deer behavioral ecology and have 

practical applications for parasite control and deer management.  Given that tick and fly densities 

fluctuate significantly in space and time, the control of ectoparasite loads can be incorporated 

into deer management.  Current tactics used to control the spread of ectoparasites include 

herbicide treatment using 4-poster bait stations (Carroll et al., 2009) and habitat manipulation, 

including controlled burning (Jacobson and Hurst, 1979) and the disking of food plots (Jacobson 

et al., 2011).  Our results provide additional information that can supplement the location and 

timing of these approaches. 

 Knowing that ticks are more prevalent on males than females, primarily during the rut, 

the placement of 4-posters may prove most beneficial where bucks are found at particular times 

of the year.  This should be determined on a population basis, as land cover and breeding periods 

vary across white-tailed deer geographical range.  During parturition, control measures should 

also be established near the bedding areas of fawns, where hippoboscids tend to pupate       
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(Allan, 2001; Kern, 2003).  Reducing fly densities where juveniles are most affected could 

potentially reduce initial densities per fawn/yearling and the horizontal transmission to other 

individuals.  If initial fly parasitism is reduced, a decrease in stimulus-driven grooming should 

therefore follow, resulting in reduced stress and/or an increase in energy conservation within the 

population. 

 Direct manipulation of land cover can also help ectoparasite control and be beneficial to 

deer management (e.g., population density, sex ratio, etc.).  Habitat manipulation can allow deer 

to circumvent certain land cover types that harbor detrimental ectoparasites.  For example, 

increased sunlight by clear-cutting and/or thinning dense habitat and food plots could promote 

tick desiccation (Jacobson et al., 2011).   

 Ectoparasite densities with respect to land cover have also been considered within the 

programmed grooming model: the habitat (Hart et al., 1992) and tick challenge principles 

(Mooring, 1995 in Mooring et al., 2004).  These concepts were not considered in our study due 

to habitat heterogeneity and a need to quantify the spatial use of landscapes by deer (see below).   

 

Implications for Future Research 

 Within the programmed grooming model, four principles predict a baseline rate of 

grooming in the absence of external stimuli.  Our study supported the vigilance principle and 

refuted the intraspecific body size principal of programmed grooming.  However, the habitat and 

tick challenge principles remain untested in natural populations of white-tailed deer because such 

tests would require a more exhaustive approach than what was possible in this study.   

To address the habitat and tick challenge principles, it would be necessary to chart 

environmental characteristics (e.g., land cover, sunlight exposure).  However, quantifying 
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percent land cover within each deer’s estimated home range does not equate to the time spent by 

each individual within each type of land cover (Figure 5; Esri; Jin et al., 2013).  For example, an 

individual’s home range may include 50% deciduous forest, but one should not assume that it 

spends 50% of its time there.  Due to the heterogeneous habitat in southwest Alabama, testing 

the habitat and tick challenge principles would require recording time budgets of each deer 

regarding land cover.  Environmental ectoparasite density (tick challenge) and habitat type 

(habitat principle) could then be correlated with grooming behavior while considering the 

movement of deer within a heterogeneous environment.  Habitat has been correlated to the 

grooming behavior of cervids and bovids, but habitat types were ranked according to literary 

support (i.e., scaled 1-6 based upon habitat density; Mooring et al., 2000; Mooring et al., 2004).  

For future studies, we recommend that a direct approach be taken for white-tailed deer, as 

opposed to assuming homogeneous land cover.   
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To our knowledge, this is the first study to test programmed and stimulus-driven 

grooming in wild white-tailed deer that includes other ectoparasites (flies) in addition to ticks.  

Studies of grooming in captive dimorphic terrestrial mammals provided information about the 

evolution of grooming behavior by controlling for stimulus-driven grooming (e.g., Mooring et 

al., 2000; Mooring et al., 2002; Mooring et al., 2004).  However, a multivariate approach to 

Figure 5 | Average ectoparasite load per deer per harvest location with respect to land cover.  Pie 

chart diameter also represents average home ranges of resident Alabama white-tailed deer (81 ha; 

Marchington and Hirth, 1984 in Stewart et al., 2011).   
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studying parasitism as it relates to grooming in wild populations is yet to be explored; this will 

provide us with a more precise view into the natural history of these species and also a broader 

approach towards the evolution of grooming.  Our hope is that this work contributes to 

knowledge of grooming and parasitism in one of North America’s most common game species 

and inspires future work in white-tailed deer behavioral ecology.   
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